

# **Examination report**

Diesel fuel filter

SWK 2000/5 - 50

Part A : Differential pressure curves

Part B: Water separation

Part C : Solids separation

and

backwashing



Reference no. : 3.1.2-46/84 Order no. : 48 05 03/01

Essen, 06.12.93

Scl/Dke

# Report on the examination of diesel fuel filter SWK 2000/5 - 50

| Client                  | Es  | illibrord Lösing<br>sener Str. 108<br>529 Hattingen                 |
|-------------------------|-----|---------------------------------------------------------------------|
| Examination object      | wit | esel fuel filter SWK 2000/5-50<br>h filter elements<br>0 µm<br>0 µm |
| Aims of the examination | A.  | Measurement of the pressure loss curves                             |
|                         | В.  | Measurement of the degrees of water separation                      |
|                         | C.  | Measurement of solids separation and backwashing behaviour          |

Page 2 of 5

Report dated 06.12.93 Reference no.: 3.1.2-46/84 Order no.: 48 05 03/01

#### Part A

# Differential pressure curves

# 1. Examination object

The diesel fuel filter SWK 2000/5-50 to be examined is designed for installation on the suction side. The nominal flow rate is 6 l/min.

Extra light heating oil with a density of 0.845 g/cm³ (at 15 °C) was used as the test oil.

#### 2. Examination commission

Measurement of the pressure differentials up to the nominal flow rate of 6 l/min. with the 10  $\mu m$  and 30  $\mu m$  filter elements and the plotting of the differential pressure curves ( $\Delta p = f$  (V)).

# 3. Results of the examination

The differential pressure curves are shown in Annex 1 of Part A of this examination report.

Annex



Annex 1 Page 1 of 2

To part A of the report dated 06.12.93 Reference no.: 3.1.2-46/84 Order no.: 48 05 03/01

Pressure loss measurement on a diesel fuel filter



Type of filter: Separ SWK 2000/5-50

Filter element: 10 µm



Annex 1 Page 2 of 2

To part A of the report dated 06.12.93 Reference no.: 3.1.2-46/84 Order no.: 48 05 03/01

Pressure loss measurement on a diesel fuel filter



Type of filter: Separ SWK 2000/5-50

Filter element: 30 µm





# Part B

## Water separation

## 1. Examination object

The diesel fuel filter SWK 2000/5-50 to be examined is designed for installation on the suction side. The nominal flow rate is 6 l/min.

Extra light heating oil with a density of 0.845 g/cm³ (at 15 °C) was used as the test oil.

The water was continuously fed into the filter's suction line and intermittently extracted from the filter casing without interruption of the test run.

#### 2. Examination commission

Determining the degrees of water separation using 10  $\mu m$  and 30  $\mu m$  filter elements.

- Feeding water into the

test oil stream

: 0.2 % by volume

- Test oil flow rates

: 2 l/min., 4 l/min. and 6 l/min.

- Test time

: 60 mins in each case

- Sampling after 15 mins, 30 mins, 45 mins and 60 mins.

#### 3. Results of the examination

The results of the measurements are shown in Annex 1 of Part B of this examination report.

In the calculation of the degree of separation only the water rate specifically fed into the test oil stream, namely 0.2 % by volume, was taken into account.

#### Annex



Annex 1 Page 1 of 2

To part B of the report dated 06.12.93 Reference no.: 3.1.2-46/84 Order no.: 48 05 03/01

Water separation Inseel fuel filter SWK 2000/5-50

Filter element : 10 µm
Test oil flow rates : 2 l/min, 4 l/min, 6 l/min
Feeding water : 0.2 % by volume

| Degree of water<br>separation<br>[%]     | 100<br>99,87<br>99,66<br>99,75<br>99,71                             | 100<br>99,37<br>99,75<br>99,58<br>99,54                                    | 100<br>99,37<br>99,54<br>99,33<br>97,40                                     | 100          |
|------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------|
| Water content of the sample [mg/kg]      | 27 - 27 = 0 $30 - 27 = 3$ $35 - 27 = 8$ $33 - 27 = 6$ $34 - 27 = 7$ | 24 - 24 = 0<br>39 - 24 = 15<br>30 - 24 = 6<br>34 - 24 = 10<br>35 - 24 = 11 | 16 - 16 = 0<br>31 - 16 = 15<br>27 - 16 = 11<br>32 - 16 = 16<br>78 - 16 = 62 | 20 - 20 = 0  |
| Water content in test oil stream [mg/kg] | 0 + 27<br>2381 + 27<br>2381 + 27<br>2381 + 27<br>2381 + 27          | 0 + 24<br>2381 + 24<br>2381 + 24<br>2381 + 24<br>2381 + 24                 | 0 + 16<br>2381 + 16<br>2381 + 16<br>2381 + 16<br>2381 + 16                  | 0 + 20       |
| Sample no. ")<br>[-]                     | 1st 0-sample 5-10-2-15 5-10-2-30 5-10-2-45 5-10-2-60                | 2nd 0-sample<br>5-10-4-15<br>5-10-4-30<br>5-10-4-45<br>5-10-4-60           | 3rd 0-sample<br>5-10-6-15<br>5-10-6-30<br>5-10-6-45<br>5-10-6-60            | 4th 0-sample |
| Point when<br>sample taken<br>[min]      | -<br>15<br>30<br>45<br>60                                           | -<br>15<br>30<br>45<br>60                                                  | -<br>15<br>30<br>45<br>60                                                   |              |

1) Structure of sample no.: type of filter - size of pores [µm] - test oil flow rate [l/min] - point when sample taken [min]

### Water separation Mesel fuel filter SWK 2000/5-50

Filter element : 30 µm

Test oil flow rates: 2 l/min, 4 l/min, 6 l/min
Feeding water: 0,2 Vol. %

| Point when sample taken [min]                     | Sample no. 1) [-]                                                                                                                                                 | Water content in<br>test oil stream<br>[mg/kg]                                                                                                      | Water content<br>of the sample<br>[mg/kg]                                                                                                                                    | Degree of water separation [%]                                                    |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 15<br>30<br>45<br>60<br>-<br>15<br>30<br>45<br>60 | 1st 0-sample<br>5-30-2-15<br>5-30-2-30<br>5-30-2-45<br>5-30-2-60<br>2nd 0-sample<br>5-30-4-15<br>5-30-4-30<br>5-30-4-60<br>3rd 0-sample<br>5-30-6-15<br>5-30-6-30 | 0 + 47 $2381 + 47$ $2381 + 47$ $2381 + 47$ $2381 + 47$ $0 + 40$ $2381 + 40$ $2381 + 40$ $2381 + 40$ $2381 + 40$ $2381 + 32$ $2381 + 32$ $2381 + 32$ | 47 - 47 = 0 $45 - 47 = 0$ $44 - 47 = 0$ $33 - 47 = 0$ $36 - 47 = 0$ $40 - 40 = 0$ $145 - 40 = 105$ $101 - 40 = 61$ $49 - 40 = 9$ $48 - 40 = 8$ $32 - 32 = 0$ $113 - 32 = 81$ | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>95,59<br>97,44<br>99,62<br>99,66 |
| 45<br>60                                          | 5-30-6-45<br>5-30-6-60<br>4th 0-sample                                                                                                                            | 2381 + 32<br>2381 + 32<br>0 + 35                                                                                                                    | 427 - 32 = 395<br>267 - 32 = 235<br>645 - 32 = 613<br>35 - 35 = 0                                                                                                            | 83,41<br>90,13<br>74,25                                                           |

<sup>1)</sup> Structure of sample no.: type of filter - size of pores  $[\mu m]$  - test oil flow rate [l/min] - point when sample taken [min]

Report dated 06.12.93 Reference no.: 3.1.2-46/84 Order no.: 48 05 03/01 RWTUV

# Part C

# Solids separation and backwashing behaviour

## 1. Examination object

The diesel fuel filter SWK 2000/5-50 to be examined is designed for installation on the suction side. The nominal flow rate is 6 l/min.

Extra light heating oil with a density of 0.845 g/cm³ (at 15 °C) was used as the test oil.

Coarse air cleaner test dust was used as the solid.

#### 2. Examination commission

Measurement of solids separation and backwashing behaviour with use of 10  $\mu$ m and 30  $\mu$ m filter elements was as follows:

- (1) Exposure of the filter to clean test oil (filtered through a 2  $\mu$ m filter element) and the measurement of pressure loss.
- (2) Switching over to the contaminated oil tank.
- (3) At  $\Delta p > 300$  mbar the pump was switched off and, at the same time, the filter was shut off on both the suction and the pressure sides.
- (4) Opening of the vent screw and draining of the test oil from the filter casing including all the solid slurry; determination of the solids content in this sample.
- (5) Restart-up of the system with clean test oil and measurement of pressure loss.
- (6) etc.
- Test oil flow rate

; 5 l/min.

 Solids concentration in the test oil

: 0.05 % by weight with 10 µm filter element 0.1 % by weight

with 30 µm filter element



Report dated 06.12.93 Reference no.: 3.1.2-46/84 Order no.: 48 05 03/01

Page 5 of 5

# 3. Results of the examination

The results of the measurements conducted with regard to the solids separation and backwashing behaviour are shown in Annex 1 of Part C of this examination report.

Annex

. For the contents

Dipl.-Ing. R. Schüler

Jelipus



To part C of the report dated 06.12.93 Reference no.: 3.1.2-46/84 Order no.: 48 05 03/01 Annex 1 Page 1 of 2

RWTÜV Anlagentechnik GmbH Energy Technology Subdivision

#### Solids separation measurement

Filter : SWK 2000/5-50

Filter element :  $10 \mu m$ 

Solid : Coarse air cleaner test dust

Solid concentration rate at the start : 0.05 % by weight (corresponding to 63 g)

Test oil flow rate : 5 1/min.



 $\Delta p$  at the start 27 mbar Δp after run 1 39 mbar; amount of solids in the sample: 12.2 g amount of solids in the sample:  $\Delta p$  after run 2 36 mbar; 11.1 g amount of solids in the sample:  $\Delta p$  after run 3 40 mbar; 6.2 g amount of solids in the sample: 7.6 g ∆p after run 4 40 mbar; amount of solids in the sample: Δp after run 5 45 mbar; 5.0 g Δp after run 6 40 mbar; amount of solids in the sample: 3.4 g Δp after run 7 40 mbar; amount of solids in the sample: 3.7 g amount of solids in the sample: 3.8 g  $\Delta p$  after run 8 total amount of solids: 53.0 g



Annex 1 Page 2 of 2

To part C of the report dated 06.12.93 Reference no.: 3.1.2-46/84 Order no.: 48 05 03/01

### RWTÜV Anlagentechnik GmbH Energy Technology Subdivision

#### Solids separation measurement

Filter

: SWK 2000/5-50

Filter element

: 30 μm

Solid : Coarse air cleaner test dust
Solid concentration rate at the start : 0,1 Gew. % by weight (corresponding to 126 g)

Test oil flow rate

: 5 l/min.



Time

| $\Delta p$ at the start | : | 22 mbar  |                                 |         |
|-------------------------|---|----------|---------------------------------|---------|
| Δp after run 1          | : | 24 mbar; | amount of solids in the sample: | 31.6 g  |
| Δp after run 2          | : | 24 mbar; | amount of solids in the sample: | 26.5 g  |
| Δp after run 3          | : | 24 mbar; | amount of solids in the sample: | 20.6 g  |
| ∆p after run 4          | : | 23 mbar; | amount of solids in the sample: | 13.9 g  |
| Δp after run 5          | : | 23 mbar; | amount of solids in the sample: | 7.4 g   |
| ∆p after run 6          | : | 23 mbar; | amount of solids in the sample: | 4.8 g   |
| Δp after run 7          | : | ;        | amount of solids in the sample: | 4.7 g   |
| •                       |   |          | total amount of solids:         | 109.5 g |
|                         |   |          |                                 |         |